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ABSTRACT: Constitutive equations are derived for the linear viscoelastic response of
amorphous glassy polymers subjected to physical aging. Stress–strain relations are
applied to fit experimental data for poly(methyl methacrylate), poly(styrene-co-acroni-
trile), and poly(vinyl acetate) in tensile relaxation tests and in torsional dynamic tests
at various temperatures. Fair agreement is demonstrated between observations and
results of numerical simulation. It is revealed that an increase in the annealing
temperature results in an increase in the rate of relaxation and a decrease in the
apparent rate of structural recovery. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81:
3309–3320, 2001
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INTRODUCTION

This paper is concerned with the effect of temper-
ature on the kinetics of physical aging in amor-
phous glassy polymers. Physical aging (structural
relaxation) in polymeric glasses has been a focus
of attention in the past decade (see mono-
graphs1–4 and review articles5–8). This phenome-
non is conventionally studied in one-step thermal
tests, where a specimen equilibrated at some tem-
perature T0 above the glass transition tempera-
ture Tg is quenched to a temperature T , Tg and
is isothermally annealed at the temperature T.
Structural relaxation is evidenced as changes in
specific volume, specific enthalpy, elastic moduli,
relaxation (retardation) spectra, yield stress, etc.
with waiting time (the time elapsed after quench
before the beginning of the test).

The present study deals with mechanical tests,
where an increase in the waiting time results in

an increase in elastic moduli and relaxation (re-
tardation) times. Following Struik,9 physical ag-
ing of glassy polymers is traditionally described
by means of the time–aging time principle of su-
perposition. According to this postulate, relax-
ation (retardation) curves measured at various
waiting times tw and plotted on double logarith-
mic coordinates can be superposed by shifts along
the horizontal (time) axis (with additional shifts
along the vertical axis, if necessary). The horizon-
tal shift, as, reflects changes in relaxation (retar-
dation) times, whereas the vertical shift, bs, char-
acterizes evolution of elastic moduli with waiting
time. Observations reveal that the dependence of
the horizontal shift, as, on the waiting time, tw, is
correctly predicted by the phenomenological rela-
tion

d log as

d log tw
5 m

where the constant m (the rate of aging) is close to
unity.
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To explain an increase in relaxation (retarda-
tion) times with waiting time, the concept of mo-
lecular mobility is proposed.9 According to this
concept, annealing of a specimen at some temper-
ature T below the glass transition point results in
a decrease in mobility of segments of long chains.
This effect is associated with a drop in free vol-
ume of polymeric glasses, which is confirmed by
experimental data in dilatometric9 and
PALS10–12 tests.

The following shortcomings of the time–aging
time principle of superposition may be mentioned:

1. This postulate is based on the free volume
concept,13,14 which is poorly defined from
the physical standpoint15 and which totally
neglects the thermal activation necessary
for redistribution of free volume clusters.16

2. A molecular mechanism remains obscure
for the evolution of free volume with wait-
ing time.

3. A plausible model is absent for correlations
between changes in free volume and alter-
ation of relaxation spectra.

4. The superposition principle presumes that
the ratios of relaxation (retardation) rates
do not change with waiting time. Although
this hypothesis substantially simplifies the
analysis of experimental data, no argu-
ments are provided for its justification.

5. Observations in dilatometric tests on
loaded specimens evidence that the rate of
decrease in the specific volume is indepen-
dent of stresses,17 which questions correla-
tions between molecular mobility and free
volume (at least, in the region of nonlinear
viscoelasticity).

6. Experimental data for several amorphous
polymers demonstrate poor superposition
of relaxation curves (see ref. 18 and the
references therein).

7. The assumption that the rate of aging m is
close to unity implies that the annealing
temperature T weakly affects the kinetics
of aging, which contradicts observations in
dilatometric and calorimetric tests (see
refs. 19–21 and 22–25, to mention a few).

This study focuses on the effect of annealing
temperature on structural relaxation in poly-
meric glasses observed in mechanical tests. The
objective is three-fold: (i) to develop a molecular
model for physical aging in glassy polymers, (ii) to
apply constitutive equations to the analysis of

experimental data in static and dynamic tests on
aged samples, and (iii) to demonstrate that the
kinetics of structural recovery is noticeably af-
fected by the aging temperature.

To derive a molecular model, we combine the
theory of cooperative relaxation in amorphous
polymers26 with the coarsening concept for struc-
tural recovery in glasses after thermal treat-
ment.8 An amorphous polymer is treated as an
ensemble of cooperatively rearranged regions
(CRR) bridged by links. A CRR is thought of as a
globule consisting of scores of neighboring
strands27 that change their position simulta-
neously because of large-angle reorientation of
long chains28 [observed, for example, by time–
domain nuclear magnetic resonance (NMR) spec-
troscopy29]. The initiation of CRRs is associated
with dynamic heterogeneity above the glass tran-
sition temperature, which results in the onset of
temporary microdomains with high and low den-
sities.7,30,31 The presence of large-scale density
fluctuations in polymeric liquids near the glass
transition point has been confirmed by numerous
experiments (see ref. 32 and the references therein).
The characteristic length of a relaxing region in
the vicinity of the glass transition temperature Tg
amounts to several nanometers.33–35 The size of a
CRR increases with the degree of supercooling33

(DT 5 Tg 2 T) because of slow evolution of
microdomains to an equilibrium state driven by
their coarsening.8 In the a-relaxation region,
CRRs are identified with isolated “more cohesive
regions” observed by low-frequency Raman scat-
tering, whereas the bridges (links), between
CRRs is thought of as “less cohesive spaces per-
colated through the material.”36 We do not make
concrete the physical nature of links and associ-
ate them with physical and chemical crosslinks,
entanglements, and van der Waals forces.

According to the trapping concept,28,37 a CRR
is modeled as a material point trapped at the
bottom level of its potential well on the energy
landscape. The applicability of the energy land-
scape theory to polymeric glasses is discussed by
Roland et al.38 At random times, a CRR hops to
higher energy levels as the relaxing region is
thermally agitated, but it cannot leave the trap
(the pattern of ergodicity breaking39). With refer-
ence to the transition state theory,40 it is assumed
that some liquid-like (reference) energy level ex-
ists on the energy landscape, where CRRs change
their configurations. When a CRR reaches the
liquid-like state in a hop, stresses totally relax in
it. If a relaxing region hops below the reference
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level, it returns to its initial position in the poten-
tial well without changes.

The zero level on the energy landscape is intro-
duced at the bottom level of a potential well with
the minimal depth. The depth of any potential
well with respect to the zero energy level is deter-
mined by its energy w $ 0. The distribution of
potential wells with various energies (depths) af-
ter annealing for a time tw upon quench is de-
scribed by the probability density p(tw, w).
Adopting the coarsening concept,8,41 we postulate
that evolution of the distribution function p(tw,
w) with waiting time tw is driven by fragmenta-
tion and aggregation of neighboring regions. We
do not dwell on the kinetics of coalescence, refer-
ring to the survey by Yoshino et al.42 and the
references therein. Results of numerical simula-
tion (see ref. 43) demonstrate that at the initial
stage of structural recovery, the distribution of
CRRs, p(tw, w), may be adequately described by
the exponential function

p~tw, w! 5
1

W~tw!
expF2

w
W~tw!G ~w $ 0!

(1a)

p~tw, w! 5 0 ~w , 0! (1b)

where W(tw) is the mathematical expectation of
energies of CRRs. The advantage of eqs. 1a and 1b
is that for a given waiting time tw, they contain
only one adjustable parameter, W(tw), to be found
by fitting experimental data in standard tests.
The exponential distribution function has been
previously suggested by Bouchaud,37 without de-
tailed explanations. Among other expressions for
the function p, we would mention the Gaussian
distribution28 and the generalized Gaussian dis-
tribution.44

The exposition is organized as follows. The
next section deals with stress-strain relations for
an amorphous polymer at isothermal loading
with small strain. The constitutive equations are
verified by comparison with experimental data for
poly(methyl methacrylate) (PMMA), poly(styrene-
co-acronitrile) (SAN), and poly(vinyl acetate)
(PVAc) at various degrees of supercooling. Some
concluding remarks are formulated in the last
section.

CONSTITUTIVE EQUATIONS

We focus on short-term mechanical tests, whose
duration is essentially less than the waiting time

tw. The viscoelastic response of glassy polymers is
modeled as a sequence of (driven by thermal fluc-
tuations) random hops of rearranging regions in
their potential wells.45 Let q( z) dz be the proba-
bility for a CRR to reach (in a hop) the energy
level that exceeds the bottom level of its potential
well by a value belonging to the interval [ z, z
1 dz]. Referring to Bouchaud et al.,8 we postulate
that

q~z! 5 a exp~2az! (2)

where a is a material constant. Denote by V the
position of the liquid-like (reference) state with
respect to the zero energy level. The probability
for a relaxing region in a trap with energy w to
reach the reference state in an arbitrary hop is
given by

Q~w! 5 E
V1w

`

q~z! dz 5 exp@2a~V 1 w!# (3)

Let G0 be the attempt rate (the average number of
hops in a potential well per unit time). We assume
that G0 is independent of w and is determined by
the current temperature T only. Multiplying the
attempt rate, G0, by the probability to reach the
reference state in a hop, Q, we find the rate of
rearrangement in a trap with potential energy w,

R~w! 5 G exp~2aw! (4)

where

G 5 G0exp~2aV! (5)

is the rate of relaxation.
Denote by J0(tw) the number of CRRs in the

ensemble of relaxing regions (per unit mass) after
waiting for a time tw upon quench. All regions are
assumed to be rigidly connected by links with one
another, which implies that the macrostrain in a
specimen coincides with the microstrain in each
CRR. Let J(t, t, w) be the current concentration
of CRRs located in traps with potential energy w
that has last been rearranged before instant 0 # t
# t. The initial instant, t 5 0, coincides with the
beginning of a test and corresponds to the waiting
time tw in the absolute time scale.

The function J entirely determines the distri-
bution of CRRs. In particular, J(t, 0, w) is the
concentration of relaxing regions that have not
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been rearranged until time t, J(t, t, w) is the
current concentration of CRRs in potential wells
with energy w, and ­J/­t(t, t, w) dt is the num-
ber of relaxing regions at time t (per unit mass)
that have last been rearranged within the inter-
val [t, t 1 dt]. For short-term mechanical tests,
the function J obeys the condition

J~t, t, w! 5 J0~tw!p~tw, w! (6)

Evolution of the function J is determined by re-
arrangement of relaxing regions (with the rela-
tive rate R), which implies that the functions J(t,
0, w) and ­J/­t(t, t, w) satisfy the differential
equations

­J

­t ~t, 0, w! 5 2R~w!J~t, 0, w! (7)

­2J

­t­t
~t, t, w! 5 2R~w!

­J

­t
~t, t, w! (8)

The solution of these equations with the initial
condition (eq. 6) reads

J~t, 0, w! 5 J0~tw!p~tw, w!exp@2R~w!t# (9)

­J

­t
~t, t, w! 5 F~t, w!exp@2R~w!~t 2 t!#

(10)

where

F~t, w! 5
­J

­t
~t, t, w!ut5t (11)

The quantity F(t, w) dt equals the number of
CRRs with potential energy w (per unit mass)
rearranged within the interval [t, t 1 dt]. To
calculate this value, we sum the number of initial
regions rearranged within this interval,

R~w!J~t, 0, w! dt (12)

and the number of CRRs relaxed at some instant
t # t and reaching the reference state within the
interval [t, t 1 dt],

E
0

t

R~w!
­J

­t
~t, t, w! dt dt (13)

which results in the equality

F~t, w! 5 R~w!FJ~t, 0, w! 1 E
0

t ­J

­t
~t, t, w! dtG

5 R~w!J~t, t, w! (14)

Substitution of eq. 9 into this formula implies
that

F~t, w! 5 J0~tw!p~tw, w!R~w! (15)

which, together with eq. 10 results in the formula

­J

­t
~t, t, w! 5 J0~tw!p~tw, w!

3 R~w!exp@2R~w!~t 2 t!# (16)

At uniaxial loading, a CRR is modeled as a linear
elastic solid with the mechanical energy

c~t, t, w! 5
1
2 c~tw, w!«2~t, t! (17)

where c is the rigidity of the CRR and « is the
strain from its natural (stress-free) state to the
deformed state. Unlike previous studies (see refs.
46 and 47), we postulate that the rigidity of a CRR
is proportional to its volume, v, which, in turn, is
assumed to be proportional to the energy, w, of
the potential well, where the relaxing region is
trapped,

c~tw, w! 5 c0~tw!w (18)

where c0(tw) is the average specific rigidity (per
unit energy) of relaxing regions.

To explain the dependence of the specific rigid-
ity on waiting time, we suppose that c0 is deter-
mined by the current molecular configuration of a
CRR. For a loose configuration, the rigidity is
relatively small, and it substantially grows when
the configuration becomes more compact. To sim-
plify the analysis, it is postulated that only two
configurations exist for a CRR, loose and tight,
and the rigidity c0 takes the value c1 for the loose
configuration and c2 . c1 for the tight one. These
two configurations may be associated with two
subwells of the potential well where a CRR is
trapped on the energy landscape. A similar pic-
ture (a two-well potential) was suggested by
Gibbs et al.48 and, more recently, by Khonik49 to
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predict structural recovery in glasses. Immedi-
ately upon quench from above the glass transition
temperature, the majority of CRRs are in loose
configurations (with most strands located to trans
states), which implies that the initial rigidity,
c0(0), is rather small. With the growth of waiting
time tw, trans states of some CRRs are replaced
by cis states, which is modeled as hops across an
energy barrier separating the two subwells
(whose height is determined by the difference be-
tween the energy of cis and trans states of strands
performing this transformation).50 As a result,
the specific rigidity of a CRR, c0, monotonically
increases with waiting time tw.

Because a CRR totally relaxes reaching the
liquid-like state, its stress-free configuration co-
incides with the deformed configuration of the
bulk material at the instant of rearrangement.
This result implies that the strain « from the
stress-free configuration of a relaxing region to its
deformed configuration at time t is given by

«~t, t! 5 e~t! 2 e~t! (19)

where e is the microstrain in a CRR (which coin-
cides with the macrostrain in a specimen). Com-
bining eqs. 17–19, we obtain

c~t, t, w! 5
1
2 c0~tw!w@e~t! 2 e~t!#2 (20)

The mechanical energy (per unit mass) of CRRs
that have not been rearranged during the interval
[0, t) is given by

1
2 c0~tw!e2~t! E

0

`

J~t, 0, w!w dw (21)

and the mechanical energy of relaxing regions
that rearranged within the interval [t, t 1 dt] and
have not returned to the reference state until the
current time t is calculated as

1
2 c0~tw!@e~t! 2 e~t!#2 E

0

` ­J

­t
~t, t, w!w dw dt

(22)

Summing these expressions and neglecting the
energy of interaction between CRRs, we find the
mechanical energy of an amorphous polymer (per
unit mass)

C~t! 5
1
2 c0~tw!He2~t! E

0

`

J~t, 0, w!w dw

1 E
0

t

@e~t! 2 e~t!#2 dt E
0

` ­J

­t
~t, t, w!w dwJ (23)

At small strains, the stress s is expressed in
terms of the mechanical energy per unit mass, C,
by the formula

s~t! 5 r
­C~t!
­e~t! (24)

where r is mass density in the stress-free state.
Substitution of eq. 23 into eq. 24 implies the fol-
lowing stress-strain relation:

s~t! 5 rc0~tw!Fe~t! E
0

`

J~t, 0, w!w dw

1 E
0

t

~e~t! 2 e~t!! dt E
0

` ­J

­t
~t, t, w!w dwG (25)

Given a loading program, e(t), constitutive eq. 25
is determined by the specific rigidity of a CRR,
c0(tw), and the concentration, J(t, t, w), of relax-
ing regions trapped in potential wells with ener-
gies w. The function J(t, t, w) is described by
eqs. 9 and 16 where the rate of rearrangement,
R(w) is given by eq. 4.

We concentrate of two programs of loading,
which are frequently used in experiments.

Relaxation Tests

For a standard relaxation test with

e~t! 5 H 0, t , 0,
e0, t $ 0 (26)

where the strain e0 is essentially less than the
yield strain, ey, eq. 25 implies that

s~t! 5 E0~tw!e0 E
0

`

p~tw, w!exp@2Gt exp~2aw!# dw

(27)

where
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E0~tw! 5 rc0~tw!J0~tw! (28)

is the initial Young modulus (for definiteness, we
consider tensile tests). Combining eqs. 1 and 28,
we obtain

E~t! 5 E0~tw! E
0

` w
W~tw!

3expF2S w
W~tw!

1 Gt exp~2aw!DG dw (29)

where E(t) 5 s(t)/e0 is the current Young mod-
ulus.

Dynamic Tests

For a dynamic test with the frequency v, we set

e~t! 5 H 0, t , 0,
e0exp~ivt!, t $ 0 (30)

where i 5 =21. It follows from eqs. 25 and 30
that

s~t! 5 E0~tw!e0exp~ivt!

3 H1 2 G E
0

`

p~tw, w!exp~2aw!w dw

3 E
0

t

exp@2~iv 1 G exp~2aw!!~t 2 t!# dtJ (31)

Combining eqs. 30 and 31 and introducing the
notation

s~t! 5 E*e~t! (32)

where E* is the complex elastic modulus, we ar-
rive at the formula

E*~tw, v! 5 E0~tw!

3 H1 2 G E
0

`

p~tw, w!exp~2aw!w dw

3 E
0

t

exp@2~iv 1 G exp~2aw!!s# dsJ (33)

where s 5 t 2 t. Replacing the upper limit of
integration by infinity and calculating the inte-
gral, we find that

E* 5 E0~tw!F1 2 G E
0

` p~tw, w!exp~2aw!w
G exp~2aw! 1 iv dwG

(34)

The complex modulus E* is presented in the form

E* 5 E9 1 iE0 (35)

where E9 is the storage modulus and E0 is the loss
modulus. It follows from eqs. 1 and 34 that

E9~tw, v! 5
E0~tw!v2

W~tw! E
0

` 1
G2exp~22aw! 1 v2

3 expS2
w

W~tw!Dw dw (36)

E0~tw, v! 5
E0~tw!Gv

W~tw! E
0

` exp~2aw!

G2exp~22aw! 1 v2

3 expS2
w

W~tw!Dw dw (37)

Given a waiting time tw, governing eqs. 29 and
37 are determined by three adjustable parame-
ters: the initial Young modulus, E0, the average
dimensionless energy of a CRR, W, and the relax-
ation rate, G. Without loss of generality, we set a
5 1 [this quantity may be excluded from eqs. 29
and 37 by the transformation aw 3 w and aW 3
W].

COMPARISON WITH EXPERIMENTAL DATA

To validate stress-strain relations, we fit observa-
tions in tensile relaxation tests for poly(methyl
methacrylate) (Tg 5 106°C) at various tempera-
tures T. For a description of specimens and the
experimental procedure, we refer to works by Mi-
jovic and co-workers.51,52 Equation 29 implies
that the ratio of elastic moduli

r~tw, t! 5
E~t!

E0~tw!
(38)
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is determined by two adjustable parameters, G
and W:

r~tw, t! 5 E
0

` w
W~tw!

3 expF2S w
W~tw!

1 Gt exp~2w!DG dw (39)

We begin with matching observations in a test
with the degree of supercooling DT 5 20 K. First,
we approximate data obtained at the maximum
aging time, tw 5 8.0 h, and find adjustable pa-
rameters G and W, which ensure the best fit of
measurements. The quantities G and W are de-
termined using the steepest-descent procedure.
Afterwards, we fix the value G 5 1.21 s21 and
match observations in tests with other waiting
times using the only material parameter W. Fig-
ure 1 demonstrates fair agreement between ex-
perimental data and results of numerical simula-
tion.

The same procedure of fitting is repeated for
observations in relaxation tests with DT 5 35 K
and DT 5 50 K. Figures 2 and 3 reveal that at all
temperatures, eq. 39 ensures an acceptable ap-
proximation of experimental data.

The parameter W is plotted versus waiting time
tw in Figure 4, which shows that observations are
fairly well approximated by the “linear” function

Figure 1 The ratio r(t) versus time t (s) for PMMA in
a tensile relaxation test after annealing at the temper-
ature T 5 Tg 2 20 K for a time tw (h). Key: (circles)
experimental data51,52; (solid lines) results of numeri-
cal simulation; (Curve 1) tw 5 2.0; (curve 2) tw 5 4.0;
(curve 3) tw 5 8.0.

Figure 2 The ratio r(t) versus time t (s) for PMMA in
a tensile relaxation test after annealing at the temper-
ature T 5 Tg 2 35 K for a time tw (h). Key: (circles)
experimental data51,52; (solid lines) results of numeri-
cal simulation; (curve 1) tw 5 2.0; (curve 2) tw 5 4.0;
(curve 3) tw 5 8.0.

Figure 3 The ratio r(t) versus time t (s) for PMMA in
a tensile relaxation test after annealing at the temper-
ature T 5 Tg 2 50 K for a time tw (h). Key: (circles)
experimental data51,52; (solid lines) results of numeri-
cal simulation; (curve 1) tw 5 2.0; (curve 2) tw 5 4.0;
(curve 3) tw 5 8.0.
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W 5 a0 1 a1log tw (40)

The adjustable parameters ai in eq. 40 are deter-
mined by the least-squares technique. Equation
40 reflects the so-called logarithmic kinetics of
structural recovery typical of polymeric glasses.48

The parameter a1 (that characterizes the appar-
ent rate of aging in eq. 40) and the rate of relaxation
G are plotted versus temperature T in Figures 5 and
6. The apparent rate of aging, a1, increases with the
degree of supercooling DT. Experimental data are
approximated by the linear function

a1 5 ADT (41)

where the coefficient A is found by the least-squares
algorithm. The growth of the apparent rate of aging
with DT is in agreement with experimental data in
calorimetric tests (see, e.g., refs. 23, 24, 25), which
demonstrate an increase in the rate of structural
recovery with the degree of supercooling.

The rate of relaxation G decreases with DT (in
agreement with the theory of thermally activated
processes). The dependence G 5 G(T) is fairly
well approximated by the linear function

G 5 g0 2 g1DT (42)

where the adjustable parameters gi are found
using the least-squares algorithm.

Figure 4 The dimensionless average energy of a
CRR, W, versus waiting time, tw, for PMMA in a tensile
relaxation test at temperature T (K). Key: (circles)
treatment of observations51,52; (solid lines) approxima-
tion of the experimental data by eq. 40. Key: (curve 1)
T 5 Tg 2 20, a0 5 1.5233, a1 5 0.9135; (curve 2) T
5 Tg 2 35, a0 5 1.9633, a1 5 2.2755; (curve 3) T
5 Tg 2 50, a0 5 2.7900, a1 5 2.5745.

Figure 5 The dimensionless coefficient a1 versus the
degree of supercooling DT (K) in a tensile relaxation
test. Key: (circles) treatment of observations51,52; (solid
lines) approximation of the experimental data by eq.
41; (curve 1) PMMA, A 5 0.0548; (curve 2) SAN, A
5 0.0759.

Figure 6 The rate of relaxation G (s21) versus the
degree of supercooling DT (K) in a tensile relaxation
test. Key: (circles) treatment of observations51,52; (solid
lines) approximation of the experimental data by eq.
42; (curve 1) PMMA, g0 5 1.3467, g1 5 0.0067; (curve 2)
SAN, g0 5 1.3233, g1 5 0.0047.
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We proceed with fitting observations in tensile
relaxation tests for poly(styrene-co-acronitrile) at
various temperatures T below the glass transi-
tion point Tg 5 94°C. A description of specimens
and the experimental data can be found in Mijovic
and co-workers.51,52 We employ the same proce-
dure of matching experimental data as for poly-
(methyl methacrylate): at each temperature T,
we first approximate the relaxation curve corre-
sponding to the maximum waiting time after an-
nealing. Fitting of this curve provides the relax-
ation rate G, which is used without changes in
matching experimental data at other waiting
times tw (each relaxation curve is approximated
by using the only adjustable parameter, W).

The results in Figures 7–9 demonstrate fair
agreement between observations and results of
numerical simulation. The parameter W is plot-
ted versus aging time tw in Figure 10, which
shows that eq. 40 correctly predicts experimental
data. The apparent rate of aging, a1, and the rate
of relaxation, G, are depicted in Figures 5 and 6,
which reveal that phenomenological eqs. 41 and
42 adequately describe the effect of temperature
on the rates of structural, a1, and mechanical, G,
relaxations.

We proceed with the approximation of experi-
mental data in dynamic torsional tests on poly(vi-

nyl acetate) at two temperatures T in the close
vicinity of the glass transition temperature (Tg
5 35°C). For a description of the experimental

Figure 7 The ratio r(t) versus time t (s) for SAN in a
tensile relaxation test after annealing at the tempera-
ture T 5 Tg 2 20 (K) for a time tw (h). Key: (circles)
experimental data51,52; (solid lines) results of numeri-
cal simulation; (curve 1) tw 5 2.0; (curve 2) tw 5 4.0;
(curve 3) tw 5 8.0.

Figure 8 The ratio r(t) versus time t (s) for SAN in a
tensile relaxation test after annealing at the tempera-
ture T 5 Tg 2 35 (K) for a time tw (h). Key: (circles)
experimental data51,52; (solid lines) results of numeri-
cal simulation; (curve 1) tw 5 2.0; (curve 2) tw 5 4.0;
(curve 3) tw 5 8.0.

Figure 9 The ratio r(t) versus time t (s) for SAN in a
tensile relaxation test after annealing at the tempera-
ture T 5 Tg 2 50 (K) for a time tw (h). Key: (circles)
experimental data51,52; (solid lines) results of numeri-
cal simulation; (curve 1) tw 5 2.0; (curve 2) tw 5 4.0;
(curve 3) tw 5 8.0.
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procedure, we refer to Kovac et al.19 First, we fit
observations obtained at the maximum waiting
time and determine adjustable parameters G0
(an analog of the initial Young modulus for
shear deformation), G, and W. Given an initial
shear modulus G0, the quantities G and W are
determined by the steepest-descent procedure.
The parameter G0 is found using the least-
squares algorithm. Afterwards, we fix the rate
of relaxation G and proceed matching observa-
tions at other waiting times by employing only
two adjustable parameters, G0 and W. The re-
sults in Figure 11 demonstrate excellent agree-
ment between results of numerical simulation
and experimental data. The dimensionless pa-
rameter W is plotted versus waiting time tw in
Figure 12, which shows that phenomenological
relation (eq. 40) fairly well approximates obser-
vations. The dependence of the initial shear modu-
lus G0 on waiting time tw is depicted in Figure 13.
This figure evidences that evolution of the initial
shear modulus with waiting time is adequately pre-
dicted by the logarithmic law

G0 5 b0 1 b1log tw (43)

where the adjustable parameters bi are found by
the least-squares algorithm.

CONCLUSIONS

A model has been developed for the effect of phys-
ical aging on the linear viscoelastic response of
amorphous glassy polymers. Constitutive equa-
tions are derived that combine the theory of coop-
erative relaxation with the coarsening concept for
structural recovery. Stress-strain relations are
applied to fit experimental data for poly(methyl
methacrylate) and poly(styrene-co-acronitrile) in
tensile relaxation tests and for poly(vinyl acetate)
in torsional dynamic tests at various tempera-
tures in the sub-Tg region. Fair agreement is
demonstrated between results of numerical sim-
ulation and observations. The following conclu-
sions are drawn:

1. The time-aging time principle of superpo-
sition is not needed for the approximation
of experimental data in mechanical tests
on aged specimens.

Figure 10 The dimensionless average energy of a
CRR, W, versus waiting time, tw, for SAN in a tensile
relaxation test at temperature T (K). Key: (circles)
treatment of observations51,52; (solid lines) approxima-
tion of the experimental data by eq. 40; (curve 1) T
5 Tg 2 20, a0 5 1.6300, a1 5 1.8769; (curve 2) T
5 Tg 2 35, a0 5 2.7633, a1 5 2.4582; (curve 3) T
5 Tg 2 50, a0 5 3.5300, a1 5 3.7870.

Figure 11 The storage modulus G9 GPa versus fre-
quency v (rad/s) for PVAc in a torsional dynamic test
after annealing for a time tw (min) at a temperature T
(°C). Key: (circles) experimental data19; (unfilled cir-
cles) T 5 20.0; (filled circles) T 5 30.0; (solid lines)
results of numerical simulation with G 5 736.0 s21 (T
5 20.0) and G 5 63.0 s21 (T 5 30.0); (curve 1) tw

5 50.0; (curve 2) tw 5 100.0; (curve 3) tw 5 200.0;
(curve 4) tw 5 400.0; (curve 5) tw 5 1360.0.
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2. Excellent agreement between observations
and results of numerical simulation is es-
tablished, provided that the relaxation rate
is independent of waiting time (which con-
tradicts the theory of molecular mobility),
whereas the average energy and the spe-
cific rigidity of a CRR increase with tw (in
agreement with the coarsening concept for
structural recovery in glasses).

3. The annealing temperature T noticeably
affects reformation of the energy land-
scape. The increase in the degree of super-
cooling, DT, results in an increase in the
apparent rate of aging (in agreement with
observations in dilatometric and calorimet-
ric tests). Its effect on the evolution of ini-
tial elastic moduli is essentially weaker.

4. Phenomenological relations shown in eqs.
40 and 43 (which reflect the logarithmic
kinetics of physical aging) fairly well ap-
proximate experimental data in static and
dynamic mechanical tests.
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